Aarhus University Seal / Aarhus Universitets segl



The big question that we will address is: “How will tree species diversity react to future global climate change?” Forests are among the most important ecosystems on Earth, harboring a substantial proportion of biodiversity and providing vital ecosystem services such as carbon sequestration, climate regulation, erosion protection, and timber and non-timber forest products. The diversity of tree species plays a central role in forest ecosystems and for the subsistence of millions of people in rural communities world-wide. Part of the challenge in understanding drivers of tree diversity is that we do not have a complete picture of the current tree distribution and diversity of tree species worldwide.

To improve our understanding of global tree distributions, we will apply advanced SDM-based approaches with thorough handling of spatial autocorrelation, pseudo-absences and model complexity to the ca. 65,000 identified tree species globally. For those species with very few records, we will complement the use of SDMs with functional traits and phylogeny to provide insights on species range responses to climate. Specifically, we will use gap filled trait data to understand climatic responses for rare species – where there are too few records to implement the SDM approach with confidence. In an additional step, this will potentially allow estimating climatic-response functions which will then be projected under different climate change scenarios and evaluate shifts in tree diversity under climate change.

This project contributes to themes 2 and 3  

Pep Serra-Diaz

Collaborator Department of Bioscience - Ecoinformatics and Biodiversity

Jens-Christian Svenning

Centre Director Department of Bioscience - Center for Biodiversity Dynamics in a Changing World